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Abstract. The simple aggregation model of charged particles introduced by Takayasu is 
explored using computer simulations. In the Takayasu model, positive or negative charges 
are randomly injected at a constant fraction p ( p :  the fraction of positive charges) and 
each cluster having a positive or negative charge is conserved when two particles collide. 
We find a kinetic growth transition between cluster growth of positive charges and that of 
negative charges at the critical concentration pc=0.5. For p>ps (or p<pJ,  the cluster 
sire distribution of a positive charge (or a negative charge) shows the dynamic scaling 
n s ( t ) = S Y f ( S / f ’ )  with thesameexponents(r=+and z=i) as thescheideggerrivermodel 
at longer timescales than the correlation time tc where ns(t) indicates the cluster distribution 
with a positive charge S (or a negative charge S for p<p.). At the critical point p=&. 
the cluster size distribution shows the dynamic scaling ns( t )  = S-’;’f (S/t3;4) with different 
exponents from the Scheidegger model. The correlation time f. scales as fc=Ap-” ( v =  
1.2110.02) where Ap=lp-pJ.  

Recently, there has been increasing interest in scaling structures of growth processes 
such as cluster-cluster aggregations (CCA), difision-limited aggregations (DLA), rough 
surfaces and river networks [l-121. Considerable work has already been performed 
on the statistical properties of aggregation. For many aggregating systems, it is known 
that the cluster size distribution follows a dynamic scaling [13-161. For example, in 
the Scheidegger model which is one of the simplest aggregation models [lo, 171, the 
cluster mass distribution satisfies the dynamic scaling law [U] 

ns( t )  = S - y ( S / t z )  with T = J  and z = $  (1) 4 

where the dynamic exponent z is given by the exponent of the drainage basin area in 
the Scheidegger river model. The exponent T =$ has been proved to be rigorous [ 17,191. 
Also, the exponents satisfy the scaling relationship [lS] 

(2- 7)z = 1. (2) 

Very recently, Takayasu [20] presented a kinetic aggregation model in which the basic 
dynamical variable is a ‘charge’ which can assume both positive and negative values. 
Intuitively, one can interpret each cluster having a positive or negative ‘charge’ which 
is conserved when two particles collide. It was theoretically shown that the distribution 
of the charge S satisfies the power law for random positive and negative injection 

ns s-413 for(I)>O (or(1) <O)  (3) 

ns z= ST5/3 for ( I )  = 0 (4) 
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where ( I )  is the mean value of the injected charges, ns is the distribution of clusters 
with positive charges for (I) > 0, ns is the distribution of clusters with negative charges 
for (I) < 0 and for (I)  = 0 equation (4) is satisfied for both positive and negative clusters. 

We consider the aggregation process with varying continuously the fraction p of 
random injection of positive and negative charges. For p > 4, the clusters with positive 
charges dominate, while for p <$ the clusters with negative charges dominate. One 
can expect that a kinetic growth transition occurs at the critical concentration pe=$ 
However, the kinetic growth transition has not been found until now. It is an open 
question as to whether or not the kinetic growth transition occurs. The charge distribu- 
tion ns has been analytically proved to satisfy (3) and (4). However, it is also an open 
question as to whether the charge distribution ns satisfies the dynamic scaling. At 
p,=& the dynamic exponent z has also been unknown until now. 

In this letter, we explore the simple aggregation model of charged particles intro- 
duced by Takayasu [20] by using computer simulation. We study the time evolution 
of the mean cluster size (characterized by the charge) and the cluster size distribution 
by varying the injection fraction p .  We show that the kinetic growth transition between 
the cluster growth of positive charges and that of negative charges occurs at the critical 
fraction p c = $  Also, we derive the scaling exponent U of the correlation time t ,  which 
scales at t .=Ap-? We show that the charge distribution n, obeys the dynamic scafing 
form ns( t )  = s-’/’~(s/ t 3 9  at p .  =$. 

First we describe the simple aggregation model of charged particles introduced by 
Takayasu [20]. We consider the aggregation process in a discretized space and time. 
On every site there is at most one particle. If two particles happen to hop onto one 
site, they immediately coalesce into a single particle with the charge of the product 
equal to the sum of the charges of the two incident particles. Let S(j, t )  be the charge 
of the particle on the site j at the t time step. The aggregation can be represented by 
the stochastic equation for S(j, i) 

S(j, t + U  = wj(t)S(j, f ) + [ l -  ~ , + ~ ( f ) l S ( j +  1 , t ) + W ,  f) (5) 

where I(j, t )  indicates the charge injected at the j th  site at time t, q(t) is a stochastic 
variable which is equal to 1 with probability f when the particle on the j th  site jumps 
to the j th site and which is equal to 0 with probability f when the particle on the j th 
site jumps to the ( j  + 1)th site. A positive charge +1 or a negative charge -1 are injected 
randomly into each site per unit time. The stochastic variable I(j, t )  is equal to +1 
with probability p and is equal to -1 with probability 1 - p .  

In the aggregation process govemed by (5), each site has the three states: a positive 
charge, a negative charge and no charge (empty site). Each cluster is infinitesimal but 
has a finite charge. The cluster is defined by the quantity of charge. Always, a unit 
(+1) of positive charges or a unit (-1) of negative charges are injected into every site 
at each time. Even on a site without a particle, a positive charge +1 is injected with 
probability p and a negative charge -1 is injected with probability 1 -p .  The number 
qf clusters increases with time since the charges are injected at a constant rate. We 
perform the computer simulation of ( 5 )  for the one-dimensional lattice with 10000 
sites until the time steps 20 000. The charge S(j, t+ 1) on each site is calculated under 
a periodic lateral boundary condition. We calculate the mean cluster size (S( t ) )  which 
is defined as 
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where ns is the cluster size distribution characterized by the charge'of the cluster. The 
cluster size distribution ns can be independently defined for the cluster with positive 
charges and the cluster with negative charges. Figure I shows the log-log plot of the 
mean cluster size with positive charges against the time t for various p.  For p >;, the 
mean cluster size (S) approaches to the straight line with the slope of the value 
1.48 * 0.02. The value 1.48 * 0.02 of the slope agrees with the dynamic exponent z in 
the Scheidegger river model. At p =$, the mean cluster size becomes the straight line 
with the slope 0.75+0.02. For p C;, the mean cluster size approaches a constant value. 
At p =p.=$, we find the kinetic growth transition from the cluster growth of negative 
charges to that of positive charges with increasing p. When the injection fraction p is 
larger than the critical value pc  =$, the clusters with positive charges become dominant 
and the negative clusters stop growing while, if p is smaller than pc=; ,  the clusters 
with negative charges dominate and the positive clusters stop growing. The kinetic 
growth transition is due to the competition between the positive and negative charges. 
We define the crossover time t, as the point at which the tangential line of the slope 
0.75 intersects with that of the slope 1.48. We can determine the crossover time to by 
finding the intersecting point in figure 1. Figure 2 shows the log-log plots of the 

Figure 1. The log-log plot of the mean size (S) of the cluster with positive charges against 
the time f for various injection fraction p.  For p > $ ,  the me& cluster size (S) approaches 
to the straight line with the slope 1.4810.02. At p=f.  the mean cluster sue becomes the 
straight line with the slope 0.75*0.02 

Figure 2. The log-log plot of the crossover time (correlation time) 1, against Ap. 'The 
crossover time is indicated by the circles for p >pE and by the triangles for p c p c .  The 
data points are on the straight lines with the slope -1.21 *0.02. 
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crossover time to against Ap ( A p = p - p .  for.p>p, and A p = p c - p  for p < p J .  The 
crossover time t ,  for p > p .  is indicated by the circles and tc for p <po  is represented 
by the triangles. For both p > p ,  and p < p c ,  the crossover time tc scales as 

tc= ( A P ) - ~  with Y = 1.21 * 0.02. (7) 
The crossover time tc gives a characteristic time and represents the correlation time. 
At longer time scales than the correlation time tc, the clusters dominated by positive 
charges appear for p > p o  and the clusters with negative charges appear dominmtly 
for p <p. .  At shorter time scales than the correlation time fc, the mixed phase with 
both positive and negative clusters exists. For p > p . ,  the mean cluster size ( S ( t ) )  of 
positive charges scales as 

At p = p c ,  (S(t)) scales as 

For p'p., the mean cluster size ( S ( t ) )  scales as 

for t < t ,  
constant for t>  t,. 

We study the scaling behaviour of the cumulative cluster size distribution. The cumula- 
tive cluster-size distribution Ns is defined as 

where ns is the cluster size distribution of positive charges or negative charges. Figure 
3 shows the log-log plot of the cumulative size distributions Ns against size IS1 for 
p =0.5 and p = O S 1  at t = 2000. The size distributions of p.ositive and negative charges 
are indicated respectively by the black and white circles. Forp = 0.5, both positive and 
negative charge distributions are consistent with each other and are on the straight 
line with the slope -$ for IS[ < 100. For. p =0.51, the positive charge distribution 
deviates from the negative charge distribution. The positive charge distribution is on 
the straight line with the slope -f for S < l O O O  which is consistent with that of the 
Scheidegger model. For p > p , ,  the positive charge distribution crosses from the size 

Figure 3. The log-log plot of the cumulative cluster sire distributions Ns of positive and 
negative charges against the size IS1 at t = 2000 for p = 0.5 and p = 0.51. 
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distribution of the coexisting cluster structure (the straight line of the slope -$) to that 
of the Scheidegger model (the straight line of the slope -4) with increasing time t. In 
order to investigate the dynamic scaling behaviour of the charge distribution at p =p. ,  
we calculate the cumulative positive charge distribution with increasing time t. Figure 
4 shows the cumulative positive charge distribution Ns against charge S for t = 2000, 
4000, SO00 and 16 000 at p = pc =$. With increasing time, the cumulative distribution 
comes to exist on the straight line of the slope -#. The mean cluster size ( S )  scales as 
(9 ) .  The cumulative cluster size distribution scales as Ns - S-'l3. We plot the rescaled 
cumulative size distribution against the rescaled size. Figure 5 shows the log-log plot 
of the rescaled cumulative size distribution SU3Ns against the rescaled size t-3'4S for 
various t. AU data points collapse on a single curve. At p=pc=f,  the cluster size 
distribution ns satisfies the dynamic scaling 

n s ( t ) = S - 5 / 3 ~ ( S / t 3 / 4 ) .  (12) 

(2 - 71.7 =a. 

Here, the scaling relation between T and z holds 

(13) 

The scaling relationship is compared with (2 - T)Z = 1 of the Scheidegger model [lS]. 
The scaling structure at p = p .  is different from the Scheidegger model and the Takayasu 
model belongs to a different universality class from the Scheidegger model. For p > pc ,  

1 

Figure 4. The time evolution of the cumulative size distribution Ns of positive charges at 
the critical point p = pc =i. The log-log plot of the cumulative sue distribution against the 
sire S at t = 2000,4000,8000 and 16 000. 

Figure 5. The log-log plot of the rescaled cumulative size distribution S2/3N, against the 
rescaled time t-0.75S at p=p.=$.  
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the cluster size distribution of  positive charges shows the same dynamic scaling as the 
Scheidegger model [18] at longer timescales than the correlation time tc 

Takayasu [20] exactly solved the aggregation of charged particles and found only 
the exponent T of the charge distribution (equations (3) and (4)). The kinetic growth 
transition found in this letter has been unknown until now. It may be possible to solve 
exactly this kinetic growth transition. 

In summary, we find a kinetic growth transition between the cluster growth of 
positive charges and that of negative charges with varying injection fraction p of 
charged particles in the Takayasu model. We show that the charge distribution satisfies 
the dynamic scaling (12) at the critical point p =p. = 4. We derive that the correlation 
time t, scales as t,= Ap".''. 
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